

 Website: ijetms.in Issue:4, Volume No.3, November-2019

9

MAXIMUM SUM ARRAY FIRST SEARCH ALGORITHM FOR

GRAPH TRAVERSAL

C.M.T.Karthigeyan1, C.SatheeshPandian2

1Assistant Professor Department of CSE Government College of Engineering Bargur,Krishnagiri,

Tamilnadu, India.
2Assistant Professor Department of CSE Government College of Engineering Bodinayakanur ,Theni,

Tamilnadu, India.

Abstract

Graphs are the commonly used data structures that describe a set of objects as nodes and the

connections between them as edges. Graph traversal is a technique to find all nodes reachable from a

given set of root nodes. To traverse a graph is to process every node in the graph exactly once. The two

most widely used algorithms used for traversing a graph are Breadth First Search and Depth First

Search. This paper presents a new algorithm namely maximum sum array first search algorithm for

traversing a graph. In this algorithm the node with the maximum number of edges if processed first and

then its neighboring nodes are processed. This paper presents an algorithm to traverse an undirected or

a directed graph and calculates the time and space complexity of the algorithm. The objective of

proposed algorithm is to find a new alternative algorithm that can be applied to all types of graphs.

Keywords - Adjacency Matrix, Breadth First Search, Depth First Search, Graph Traversal

Introduction

Graphs are non-linear data structures comprising a finite set of nodes and edges. The nodes are the

elements and edges are ordered pairs of connections between the nodes. Graphs are widely used data

structure in computer science and different computer applications. Generally, a graph is represented

as a pair of sets (V, E). V is the set of vertices or nodes. E is the set of Edges. The elements of a graph

are connected through edges. A path or a line between two vertices in a graph is called edges. Two

nodes are called adjacent if they are connected through an edge. Path is a sequence of edges between

two nodes. It is essentially a traversal starting at one node and ending at another. An undirected graph

is one where the edges do not specify a particular direction. The edges are bi-directional. A directed

graph is one where the edges can be traversed in a specified direction only. A weighted graph is one

where the edges are associated with a weight. This is generally the cost to traverse the edge.

With the development of computer and information system, the research on graph algorithm is wide

opened. The two most widely used algorithms used for traversing a graph are Breadth First Search and

Depth First Search. BFS is a vertex based technique for finding a shortest path in graph. It uses a

Queue data structure which follows first in first out. In BFS, one vertex is selected at a time when it is

visited and marked then its adjacent are visited and stored in the queue. DFS is a edge based

technique. It uses the Stack data structure, performs two stages, first visited vertices are pushed into

stack and second if there is no vertices then visited vertices are popped.

Graph Traversal Algorithms Breadth First Search (BFS) Algorithm

Breadth First Search (BFS) algorithm traverses a graph in a breadth ward motion and uses a queue to

remember to get the next vertex to start a search when a dead end occurs in any iteration. BFS is a

graph traversal algorithm and traversal method which visits all successors of a visited node before

visiting any successors of any of those successors. BFS tends to create very wide and short trees. BFS

is implemented using a queue, representing the fact that the first node visited is the first node whose

https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
http://www.geeksforgeeks.org/stack-data-structure/

 Website: ijetms.in Issue:4, Volume No.3, November-2019

10

successors are visited. BFS algorithm inserts a node into a queue, which we assume is initially empty.

Every entry in the array mark is assumed to be unvisited. If the graph is not connected, BFS must be

called on a node of each connected component. In BFS we must mark a node visited before inserting it

into the queue, so as to avoid placing it on the queue more than once. The algorithm terminates when

the queue becomes empty.

The algorithm for BFS is shown below:

 Step 1: SET STATUS = 1 (ready state) for each node in G

 Step 2:Enqueue the starting node A and set its STATUS = 2 (waiting state)

 Step 3: Repeat Steps 4 and 5 until QUEUE is empty

 Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).

 Step 5:Enqueue all the neighbors of N that are in the ready state (whose STATUS = 1) and set their

STATUS = 2 (waiting state) [END OF LOOP]

 Step 6: EXIT

START FROM A

Fig 1: Directed graph

A -> B -> C -> D -> F -> E -> G -> H -> J -> I

So the output of above tree traversal is A,B,C,D,F,E,,G,H,J,I

Depth First Search (DFS) Algorithm

Depth First Search (DFS) algorithm traverses a graph in a depth ward motion and uses a stack to

remember to get the next vertex to start a search when a dead end occurs in any iteration. A depth first

search of a graph differs from a breadth first search in that the exploration of a vertex v is suspended

as soon as a new vertex is reached. At this time, exploration of the new vertex u begins. When this new

vertex has been explored, the exploration of u continues. The search terminates when all reached

vertices have been fully explored. This search process is best described recursively. DFS uses a

strategy that searches deeper in the graph whenever possible. The predecessor sub graph produced by

DFS may be composed of several trees, because the search may be repeated from several sources. This

predecessor sub graph forms a depth-first forest E composed of several depth-first trees and the edges

in E are called tree edges.

 Website: ijetms.in Issue:4, Volume No.3, November-2019

11

The algorithm for BFS is shown below:

 Step 1: SET STATUS = 1 (ready state) for each node in G

 Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

 Step 3: Repeat Steps 4 and 5 until STACK is empty

 Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

 Step 5: Push on the stack all the neighbors of N That are in the ready state(whose STATUS=1) and

set their STATUS=2 (waiting state) [END OF LOOP]

 Step 6: EXIT

Fig 2: Directed graph

START FROM A

A->B->C->F->G->J->I->D->E->H

So the output of above tree traversal is A,B.C,F,G,J,I.D,E,H

Proposed Algorithm

So far, many different variants of BFS and DFS algorithm have been implemented sequentially as well

as in parallel manner. In all parallel implementations, the unvisited nodes of the root node are visited,

but in our implementation, the node with the maximum number of edges if processed first and then its

neighboring nodes are processed. This paper presents a new algorithm namely maximum sum array

first search algorithm for traversing a graph and then compares the traversal result of a directed and

undirected graph using BFS, DFS and our proposed algorithm.

Fig 3: Directed graph

Consider the above graph. The algorithm for traversing the graph is as follows: The adjacency matrix

of the graph along with an array SUM that corresponds to the summation of the edge count of different

 Website: ijetms.in Issue:4, Volume No.3, November-2019

12

nodes is given

Starting node: A

STEP 1:

Initially, construct an adjacency matrix of graph along with the SUM array

 A B C D E F G H I J SUM

A 0 1 1 1 0 0 0 0 0 0 3

B 1 0 0 0 0 0 0 0 0 0 1

C 1 0 0 0 0 1 0 0 0 0 2

D 1 0 0 0 1 0 0 0 0 0 2

E 0 0 0 1 0 0 0 1 0 0 2

F 0 0 1 0 0 0 1 0 0 0 2

G 0 0 0 0 0 1 0 0 0 1 2

H 0 0 0 0 1 0 0 0 0 0 1

I 0 0 0 0 0 0 0 0 0 1 1

J 0 0 0 0 0 0 1 0 1 0 2

Initially Visited array will be

null null null null null null null null null null

STEP 2:

A row has the maximum sum, so choose it and visit all the nodes. Then make the maximum sum row A

and visited columns B, C, D as 0

 A B C D E F G H I J SUM

A 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 1 0 0 0 0 1

D 0 0 0 0 1 0 0 0 0 0 1

E 0 0 0 0 0 0 0 1 0 0 1

F 0 0 0 0 0 0 1 0 0 0 1

G 0 0 0 0 0 1 0 0 0 1 2

H 0 0 0 0 1 0 0 0 0 0 1

I 0 0 0 0 0 0 0 0 0 1 1

J 0 0 0 0 0 0 1 0 1 0 2

The visited array will become:

A B C D null null null null null null

STEP 3:

G row has the maximum sum, so choose it and visit all the nodes. Then make the maximum sum row G

and visited columns F, J as 0

 A B C D E F G H I J SUM

A 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0

 Website: ijetms.in Issue:4, Volume No.3, November-2019

13

C 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 1 0 0 0 0 0 1

E 0 0 0 0 0 0 0 1 0 0 1

F 0 0 0 0 0 0 1 0 0 0 1

G 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 1 0 0 0 0 0 1

I 0 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 1 0 1 0 2

The visited array will become:

A B C D G F J null null null

STEP 4:

J row has the maximum sum, so choose it and visit all the nodes. Then make the maximum sum row J

and visited columns G, I as 0

 A B C D E F G H I J SUM

A 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 1 0 0 0 0 0 1

E 0 0 0 0 0 0 0 1 0 0 1

F 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 1 0 0 0 0 0 1

I 0 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0 0

The visited array will become:

A B C D G F J I null null

STEP 5:

D row has the maximum sum, so choose it and visit all the nodes. Then make the maximum sum row D

and visited columns A, E as 0

 A B C D E F G H I J SUM

A 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 1 0 0 1

F 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0 0

 Website: ijetms.in Issue:4, Volume No.3, November-2019

14

The visited array will become:

A B C D G F J I E null

STEP 6: E row has the maximum sum, so choose it and visit all the nodes. Then make the maximum

sum row E and visited columns D, H as 0

 A B C D E F G H I J SUM

A 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0 0

The visited array will become:

A B C D G F J I E H

As all the nodes get visited, the proposed algorithm traverses the graph. The order of traversal is A, B,

C, D, G, F, J, I, E, H

Analysis of Time and Space Complexity

Time complexity and space complexity of BFS, DFS and our proposed algorithm shown in below

figure.

Algorithm Time Complexity Space Complexity

Breadth First Search O(V+E) O(V)

Depth First Search O(V+E) O(V)

Maximum Sum Array Search O(V+E) O(V2)

Fig 4: Comparison of Time and Space Complexity

Future Scope and Conclusion

The proposed algorithm can be further improved in terms of running time and space. The time

complexity is same in the worst case when the algorithm traverses each vertex along each path. The

algorithm sometimes cannot traverse the graph accurately. In case of directed graph the proposed

algorithm sometime fails to traverse it accurately similar to BFS and DFS. However, the proposed

algorithm has a time complexity much less than BFS or DFS when it does not have to go through each

 Website: ijetms.in Issue:4, Volume No.3, November-2019

15

edge to traverse the nodes. This also reduces the space complexity as well. However, the accuracy can

still be improved. The proposed algorithm can still be made time and space efficient.

References

[1] Introduction to Algorithms (2nd ed) by Cormen Thomas H, Leiserson ,Charles E,Clifford(2001)

[2] Danny Sleator, “Parallel and Sequential Data Structures and Algorithms,15-210 (fall 2013) ”,

Sept. 24 , 2013.

[3] Graph theory and applications by Paul Van Dooren

[4] Applications of graph theory by S.G.Shirinivas S.Vetrivel , Dr.N.M. Elango

[5] Nykamp DQ, “Undirected graph definition” on Math Insight. Available:

http://mathinsight.org/definition/undirected_graph

[6] F. Y. Chin, J. Lam, and I.-N. Chen. Efficient parallel algorithms for some graph problems.

Communications of the ACM, 25(9):659–65, 1982

[7] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.

Journal of Computer and System Sciences, 38(1):86–124, February 1989.

[8] Wiki books contributors, Available: https://en.m.wikibook.org/wiki/Data

Structures/Graphs

http://mathinsight.org/definition/undirected_graph
https://en.m.wikibook.org/wiki/Data

	MAXIMUM SUM ARRAY FIRST SEARCH ALGORITHM FOR GRAPH TRAVERSAL
	Abstract
	Introduction
	Graph Traversal Algorithms Breadth First Search (BFS) Algorithm
	Depth First Search (DFS) Algorithm
	Proposed Algorithm
	Analysis of Time and Space Complexity
	Future Scope and Conclusion
	References

